房玄龄历算术简介


 
壬辰以来,至景初元年丁已岁,积四千四十六,算上。
此元以天正建子黄钟之月为历初,元首之岁,夜半甲子朔旦冬至。
元法,万一千五十八。
纪法,千八百四十三。
纪月,二万二千七百九十五。
章岁。十九。
章月,二百三十五。
章闰,七。
通数,十三万四千六百三十。
日法,四千五百五十九。
余数,九千六百七十。
周天,六十七万三千一百五十。
纪岁中,十二。
气法,十二。
没分,六万七千三百一十五。
没法,九百六十七。
月周,二万四千六百三十八。
通法,四十七。
会通,七十九万百一十。
朔望合数,六万七千三百一十五。
入交限数,七十二万二千七百九十五。
通周,十二万五千六百二十一。
周日日余,二千五百二十八。
周虚,二千三十一。
斗分,四百五十五。
甲子纪第一
纪首合朔,月在日道里。
交会差率四十一万二千九百一十九。
迟疾差率,十万三千九百四十七。
甲戌纪
纪首合朔,月在日道里。
交会差率,五十一万六千五百二十九。
迟疾差率,七万三千七百六十七。
甲申纪
纪首合朔,月在日道里。
交会差率,六十二万一百三十九。
迟疾差率,四万三千五百八十七。
甲午纪第四
纪首合朔,月在日道里。
交会差率,七十二万三千七百四十九。
迟疾差率,一万三千四百七。
甲辰纪第五
纪首合朔,月在日道里。
交会差率,三万七千二百四十九。
迟疾差率,十万八千八百四十八。
甲寅纪第六
纪首合朔,月在日道里。
交会差率,十四万八百五十九。
迟疾差率,七万八千六百六十八。
交会纪差十万三千六百一十。求其数之所生者,置一纪积月,以通数乘之,会通去之,所去之余,纪差之数也。以之转加前纪,则得后纪。加之未满会通者,则纪首之岁天正合朔月在日道里;满去之,则月在日道表。加表,满在里;加里,满在表。
迟疾纪差三万一百八十。求其数之所生者,置一纪积月,以通数乘之,通周去之,余以减通周,所减之余,纪差之数也。以之转减前纪,则得后纪。不足减者,加通周。求次元纪差率,转减前元甲寅纪差率,余则次元甲子纪差率也。求次纪,如上法也。
推朔积月术曰:置壬辰元以来,尽所求年,外所求,以纪法除之,所得算外,所入纪第也,余则入纪年数也。以章月乘之,如章岁而一,为积月,不尽为闰余。闰余十二以上,其年有闰。闰月以无中气为正。
推朔术曰:以通数乘积月,为朔积分。如日法而一,为积日,不尽为小余。以六十去积日,余为大余。大余命以纪,算外,所求年天正十一月朔日也。
求次月,加大余二十九,小余二千四百一十九,小余满日法从大余,命如前,次月朔日也。小余二千一百四十以上,其月大也。
推弦望:加朔大余七,小余千七百四十四,小分一,小分满二从小余,小余满日法从大余,大余满六十去之,余命以纪,算外,上弦日也。又加,得望、下弦、后月朔。其月蚀望者,定小余如在中节者定小余如所近中节间限数、限数以下者,算上为日。望在中节前后各四日以还者,视限数;望在中节前后各五日以上者,视间限。
推二十四气术曰:置所入纪年,外所求,以余数乘之,满纪法为大余,不尽为小余。大余满六十去之,余命以纪,算外,天正十一月冬至日也。
求次气,加大余十五,小余四百二,小分十一,小分满气法从小余,小余满纪法从大余,命如前,次气日也。
推闰月术曰:以闰余减章岁,余以岁中乘之,满章闰得一月,余满半法以上,亦得一月。数从天正十一月起,算外,闰月也。闰有进退,以无中气御之。
推没灭术曰:因冬至积日有小余者,加积一,以没分乘之,以没法除之,所得为大余,不尽为小余。大余满六十去之,余命以纪,算外,即去年冬至后日也。
求次没,加大余六十九,小余五百九十二,小余满没法得一,从大余,命如前。小余尽,为灭也。
推五行用事日:立春、立夏、立秋、立冬者,即木、火、金、水始用事日也。各减其大余十八,小余四百八十三,小分六,余命以纪,算外,各四立之前,土用事日也。大余不足减者,加六十;小余不足者,减大余一,加纪法;小分不足减者,减小余一,加气法。
推卦用事日:因冬至大余,六其小余,即《坎卦》用事日也。加小余万九十一,满元法从大余,即《中孚》用事日也。
求次卦,各加大余六,小余九百六十七。其四正各因其中日,六其小余。推日度术曰:以纪法朔积日,满周天去之,余以纪法除之,所得为度,不尽为分。命度从牛前五起,宿次除之,不满宿,则天正十一月朔夜半日所在度及分也。
求次日,日加一度,分不加,经斗除斗分,分少,退一度。
推月度术曰:以月周乘朔积日,满周天去之,余以纪法除之,所得为度,不尽为分,命如上法,则天正十一月朔夜半月所在度及分也。
求次月,小月加度二十二,分八百六,大月又加一日,度十三,分六百七十九;分满纪法得一度,则并月朔夜半月所在度分及也。其冬下旬,月在张、心署之。
推合朔度术曰:以章岁乘朔小余,满通法为大分,不尽为小分。以大分从朔夜半日度分,分满纪法从度,命如前,则天正十一月合朔日月所共合度也。
求次月,加度二十九,大分九百七十七,小分四十二,小分满通法从大分,大分满纪法从度,经斗除其分,则次月合朔日月所共合度也。
推弦望日所在度:加合朔度七,大分七百五,小分十,微分一,微分满二从小分,小分满通法从大分,大分满纪法从度,命如前,则上弦日所在度也。又加,得望,下弦、后月合也。
推弦望月所在度:加合朔度九十八,大分千二百七十九,小分三十四,数满命如前,即上弦月所在度也。又加,得望,下弦、后月合也。
推日月昏明度术曰:日以纪法,月以月周,乘所近节气夜漏,二百而一,为明分。日以减纪法,月以减月周,余为昏分。各以分加夜半,如法为度。
推合朔交会月蚀术曰:置所入纪朔积分,以所入纪下交会差率之数加之,以会通去之,余则所求年天正十一月合朔去交度分也。以通数加之,满会通去之,余则次月合朔去交度分也。以朔望合数各加其月合朔去交度分,满会通去之,余则各其月望去交度分也。朔望去交分,如朔望合数以下,入交限数以上者,朔则交会,望则月蚀。
推合朔交会月蚀月在日道表里术曰:置所入纪朔积分,以所入纪下交会差率之数加之,倍会通去之,余不满会通者,纪首表,天正合朔月在表;纪首里,天正合朔月在里。满会通去之,表满在里,里满在表。
求次月,以通数加之,满会通去之,加里满在表,加表满在里。先交会后月蚀者,朔在表则望在表,朔在裹则望在里。先月蚀后交会者,看蚀月朔在里则望在表,朔在表则望在里。交会月蚀如朔望合数以下,则前交后会;如入交限数以上,则前会后交。其前交后会近于限数者,则豫伺之;前会后交近于限数者,则后伺之。
求去交度术曰:其前交后会者,今去交度分如日法而一,所得则却交度分也。其前会后交者,以去交度分减会通,余如日法而一,所得则前去交度也。余皆度分也。去交度十五以上,虽交不蚀也,十以下是蚀,十以上,亏蚀微少,光晷相及而已。亏之多少,以十五为法。
求日蚀亏起角术曰:其月在外道,先交后会者,亏蚀西南角起;先会后交者,亏蚀东南角起。其月在内道,先交后会者,亏蚀西北角起;先会后交者,亏蚀东北角起。亏蚀分多少,如上以十五为法。会交中者,蚀尽。月蚀在日之冲,亏角与上反也。
推合朔交会月蚀入迟疾历术曰:置所入纪朔积分,以所入纪下迟疾差率数加之,以通周去之,余满日法得一日,不尽为日余,命日算外,则所求年天正十一月合朔入历日也。
求次月,加一日,日余四千四百五十。求望,加十四日,日余三千四百八十九。日余满日法成日,日满二十七去之。又除余如周日余,日余不足除者,减一日,加周虚。
推合朔交会月蚀定大小余:以入历日余乘所入历损益率,以损益盈缩积分,为定积分。以章岁减所入历月行分,余以除之,所得以盈减缩加本小余。加之满日法者,交会加时在后日;减之不足者,交会加时在前日。月蚀者,随定大小余为日加时。入历在周日者,以周日日余乘缩积分,为定积分。以损率乘入历日余,又以周日日余乘之,以周日日度小分并之,以损定积分,余为后定积分。以章岁减周日月行分,余以周日日余乘之,以周日度小分并之,以除后定积分,所得以加本小余,如上法。
推加时:以十二乘定小余,满日法得一辰,数从子起,算外,则朔望加时所在辰也。有余不尽者四之,如日法而一为少,二为半,三为太。又有余者三之,如日法而一为强,半法以上排成之,不满半法废弃之。以强并少为少强,并半为半强,并太为太强。得二强者为少弱,以之并少为半弱,以之并半为太弱,以之并太为一辰弱。以所在辰命之,则各得其少、太、半及强,弱也。其月蚀望在中节前后四日以还者,视限数;在中节前后五日以上者,视间限。定小余如间限、限数以下者,以算上为日。
斗二十六分四百五十五牛八女十二虚十危十七室十六壁九
北方九十八度分四百五十五
奎十六娄十二胃十四昴十一毕十六觜二参九
西方八十度
井三十三鬼四柳十五星七张十八翼十八轸十七
南方百十二度
角十二亢九氐十五房五心五尾十八箕十一
东方七十五度
表略
右中节二十四气,如术求之,得冬至十一月中也。加之得次月节,加节得其月中。中星以日所在为正,置所求年二十四气小余,四之,如法得一为少;不尽少,三之,如法为强;所得以减其节气昏明中星各定。
推五星术
五星者,木曰岁星,火曰荧惑星,土曰填星,金曰太白星,水曰辰星。凡五星之行,有迟有疾,有留有逆。曩自开辟,清浊始分,则日月五星聚于星纪。发自星纪,并而行天,迟疾留逆,互相逮及。星与日会,同宿共度,则谓之合。从合至合之日,则谓之终。各一以终之日与一岁之日通分相约,终而率之,岁数岁则谓之合终岁数,岁终则谓之合终合数。二率既定,则法数生焉。以章岁乘合数,为合月法。以纪法乘合数,为日度法。以章月乘岁数,为合月分;如合月法为合月数,合月之余为月余。以通数乘合月数,如日法而一,为大余。以六十去大余,余为星合朔大余。大余之余为朔小余。以通数乘月余,以合月法乘朔小余,并之,以日法乘合月法除之,所得星合入月日数也。余以通法约之,为入月日余。以朔小余减日法,余为朔虚分。以历斗分乘合数,为星度斗分。木、火、土各以合数减岁数,余以周天乘之,如日度法而一,所得则行星度数也,余则度余。金、水以周天乘岁数,如日度法而一,所得则行星度数也,余则度余也。